
Optimized Execution of Action Chains
Using Learned Performance Models of Abstract Actions∗

Freek Stulp and Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München

Boltzmannstrasse 3, D-85747 Munich, Germany
{stulp,beetz }@in.tum.de

Abstract

Many plan-based autonomous robot controllers
generate chains of abstract actions in order to
achieve complex, dynamically changing, and pos-
sibly interacting goals. The execution of these
action chains often results in robot behavior that
shows abrupt transitions between subsequent ac-
tions, causing suboptimal performance. The result-
ing motion patterns are so characteristic for robots
that people imitating robotic behavior will do so by
making abrupt movements between actions.
In this paper we propose a novel computation
model for the execution of abstract action chains.
In this computation model a robot first learns
situation-specific performance models of abstract
actions. It then uses these models to automatically
specialize the abstract actions for their execution in
a given action chain. This specialization results in
refined chains that are optimized for performance.
As a side effect this behavior optimization also ap-
pears to produce action chains with seamless tran-
sitions between actions.

1 Introduction
In recent years, a number of autonomous robots, including
WITAS [Dohertyet al., 2000], Minerva[Thrunet al., 1999],
and Chip[Firby et al., 1996], have shown impressive per-
formance in long term demonstrations. These robots have in
common that they generate, maintain, and execute chains of
discrete actions to achieve their goals. The use of plans en-
ables these robots to flexibly interleave complex and interact-
ing tasks, exploit opportunities, and optimize their intended
course of action.

To allow for plan-based control, the plan generation mech-
anisms are equipped with libraries of actions and causal mod-
els of these actions. These models include specifications of
action effects and of the conditions under which the actions
are executable. For good reasons, the action models are spec-
ified abstractly and disregard many aspects of the situations
before, during, and after their execution. This abstractness
has several big advantages. Programmers need to supply

∗The work described in this paper was partially funded by the
Deutsche Forschungsgemeinschaft in the SPP-1125.

fewer actions because viewed at an abstract level the actions
are applicable to a broader range of situations. Also the mod-
els themselves become more concise. This not only eases
the job of the programmers but also the computational task
of the automatic planning systems. At more abstract levels
the search space of plans is substantially smaller and fewer
interactions between actions need to be considered.

The advantages of abstraction, however, come at a cost.
Because the planning system considers actions as black boxes
with performance independent of the prior and subsequent
steps, the planning system cannot tailor the actions to the
contexts of their execution. This often yields suboptimal be-
havior with abrupt transitions between actions. The resulting
motion patterns are so characteristic for robots that people
trying to imitate robotic behavior will do so by making abrupt
movements between actions. In contrast, one of the impres-
sive capabilities of animals and humans is their capability to
perform chains of actions in optimal ways and with seamless
transitions between subsequent actions.

Let us illustrate these points using a simple scenario in au-
tonomous robot soccer that is depicted in Figure 1. The start-
ing situation is shown in the left sub-figure. The planner is-
sues a three step plan: 1) go to the ball; 2) dribble the ball to
shooting position; 3) shoot. If the robot naively executed the
first action (as depicted in the center sub-figure), it might ar-
rive at the ball with the goal at its back. This is an unfortunate
position from which to start dribbling towards the goal. The
problem is that in the abstract view of the planner, being at
the ball is considered sufficient for dribbling the ball and the
dynamical state of the robot arriving at the ball is considered
to be irrelevant for the dribbling action.

Goal: Score! Plan:
− go to ball
− dribble ball

in order to
Plan:
− go to ball
− dribble ball
− shoot − shoot

a) b) c)

Figure 1: Alternative execution of the same plan

What we would like the robot to do instead is to go to the
ball in order to dribble it towards the goal afterwards. The

robot should, as depicted in the Figure 1c, perform the first
action sub-optimally in order to achieve a much better posi-
tion for executing the second plan step. The behavior shown
in Figure 1c exhibits seamless transitions between plan steps
and has higher performance, achieving the ultimate goal in
less time.

In this paper we propose a novel computational model for
plan execution that enables the planner to keep its abstract
action models and that optimizes action chains at execution
time. The basic idea of our approach is to learn perfor-
mance models of abstract actions off-line from observed ex-
perience. These performance models are rules that predict
the situation- and parameterization-specific performance of
abstract actions, e.g. the expected duration. Then at execu-
tion time, our system determines the set of parameters that
are not set by the plan and therefore define the possible ac-
tion executions. It then determines for each abstract action
the parameterization such that the predicted performance of
the action chain is optimal.

The technical contributions of this paper are threefold.
First, we propose a novel computational model for the execu-
tion time optimization of action chains, presented in section 2.
Second, we show how situation-specific performance models
for abstract actions can be learned automatically (section 3).
Third, we describe a mechanism for subgoal (post-condition)
refinement for action chain optimization. We apply our im-
plemented computational model to chains of navigation plans
with different objectives and constraints and different task
contexts (section 4). We show for typical action chains in
robot soccer our computational model achieves substantial
and statistically significant performance improvements for
action chains generated by robot planners (section 5).

2 System overview
This section introduces the basic concepts upon which we
base our computational model of action chain optimization.
Using these concepts we define the computational task and
sketch the key ideas for its solution.

2.1 Conceptualization
Our conceptualization for the computational problem is based
on the notion of actions, performance models of actions,
teleo-operators, teleo-operator libraries, and chains of teleo-
operators. In this section we will introduce these concepts.

Actions are control programs that produce streams of con-
trol signals, based on the current estimated state, thereby in-
fluencing the state of the world. One of the actions used
here isgoToPose , which navigates the robot from the cur-
rent pose (at timet) [xt,yt,φt] to a future destination pose
[xd,yd,φd] by setting the translational and rotational velocity
of the robot:

goToPoseAction (xt,yt,φt,xd,yd,φd)→ vtra,vrot

Teleo-operators (TOPs)consist of an action, as well as
pre- and post-conditions[Nilsson, 1994]. The post-condition
represents the intended effect of the TOP, or its goal. It spec-
ifies a region in the state space in which the goal is sat-
isfied. The pre-condition region with respect to a tempo-
rally extended action is defined as the set of world states in
which continuous execution of the action will eventually sat-
isfy the post-condition. They are similar to Action Schemata

or STRIPS operators in the sense that they are temporally ex-
tended actions that can be treated by the planner as if they
were atomic actions.

State−space State−space

ActionPre−Cond.

Post−Cond.

The goToPoseTOP has the empty pre-condition, as it
can be executed from any state in the state space. Its post-
condition is [xt ≈ xd,yt ≈ yd, φt ≈ φd]. Its action is
goToPoseAction .

TOP libraries contain a set of TOPs that are frequently
used within a given domain. In many domains, only a small
number of control routines suffices to execute most tasks, if
they are kept general and abstract, allowing them to be ap-
plicable in many situations. Our library contains the TOPs:
goToPoseTOP anddribbleBallTOP .

A TOP chain for a given goal is a chain of TOPs such
that the pre-condition of the first top is satisfied by the current
situation, and the post-condition of each step satisfies the pre-
condition of the subsequent TOP. The post-condition of the
last TOP must satisfy the goal. It represents a valid plan to
achieve the goal.

Post−Cond.
Current state

Pre−Cond. Pre−Cond.

State−space

Action i Action i+1
Goal

Post−Cond.

Performance models of actionsmap a specific situation
onto a performance measure. In this paper the performance
measure is time. Alternatives could be chance of success or
accuracy. These models can be used to predict the perfor-
mance outcome of an action if applied in a specific situation,
by specifying the current state (satisfying the pre-conditions)
and end state (satisfying the post-conditions).

goToPoseAction.performance (xt,yt,φt,xd,yd,φd)→ t

2.2 Computational task and solution idea
The on-line computational task is to optimize the overall per-
formance of a TOP chain. The input consists of a TOP chain
that has been generated by a planner, that uses a TOP library
as a resource. The output is an intermediate refined subgoal
that optimizes the chain, and is inserted in the chain. Exe-
cuting the TOP chain is simply done by calling the action of
each TOP. This flow is displayed in Figure 2.

To optimize action chains, the pre- and post-conditions of
the TOPs in the TOP chains are analyzed to determine which
variables in the subgoal may be freely tuned. These are the
variables that specify future states of the robot, and are not
constrained by the pre- and post-conditions of the respec-
tive TOP. For the optimization of these free variables, per-
formance models of the actions are required. Off-line, these
models are learned from experience for each action in the
TOP library. They are used by the subgoal refinement sys-
tem during execution time, but available as a resource to other
systems as well.

One of the big advantages of our approach is that neither
TOP library, nor the generation of TOP chains (the planner)

3) Learn Performance Model

Refined (optimal) subgoal

4) Subgoal refinement
4.2) Find relevant variables
4.3) Optimize relevant variables

State−space

Post−Cond.
Pre−Cond. Actioni+1Actioni

State−space
Pre−Cond.

State−space

Post−Cond.
Goal

Perf.Model1O
ff

−l
in

e
O

n−
lin

e TOP chain

Execute TOP chain

Generate TOP chain

Pre/Post−conds

Action
TOP1

TOP Library

Figure 2: System Overview

nor the TOP chain executor need to be modified in any way
to accommodate the action chain optimization system.

3 Learning performance models
The actual optimization of TOP chains, to be discussed in
section 4, needs performance models of each action in the
TOP library. For each action, the robot learns a function that
maps situations to the cost of performing this action in the re-
spective situation. In this paper, the performance measure is
time, although our mechanisms applies to other cost functions
without requiring any change. The robot will learn the per-
formance function 1) from experience 2) using a transformed
state space 3) by partitioning the state space 4) by approxi-
mating functions to the data in each of these partitions. We
will first motivate why, and then explainhow this has been
implemented.

Let us consider the navigation actiongoToPoseAction .
This navigation action is based on computing a Bezier
curve, and trying to follow it as closely as possible.
dribbleBallAction uses the same method, but restricts
deceleration and rotational velocity, so as not to loose the ball.
We abstract away from their implementation, as our methods
consider the actions to be black boxes, whose performance
we learn from observed experience.

The robot learns the performance functionfrom experi-
ence. It executes the action under varying situations, observes
the performance, and logs the experience examples. Since
the method is based solely on observations, it is also possi-
ble to acquire models of actions whose internal workings are
not accessible. The robot executed each action 1000 times,
with random initial and destination poses. The robot recorded
the direct variables and the time it took to reach the destina-
tion state at 10Hz, thereby gathering 75 000 examples of the
format [xt,yt,φt,xd,yd,φd,time] per action. These examples
were gathered using our simulator, which uses learned dy-
namics models of the Pioneer I platform. It has proven to be
accurate enough to port control routines from the simulator
to the real robot without change. Using our Pioneer I robots,
acquiring this amount of data would take approximately two
hours of operation time.

The variables that were recorded do not necessarily corre-
late well with the performance. We therefore design atrans-
formed feature spacewith less features, but the same poten-

tial for learning accurate performance models. In Figure 3 it
is shown how exploiting transformational and rotational in-
variance reduces our original six-dimensional feature space
into a three-dimensional one, with the same predictive power.

3−D:6−D:

xd

xd dϕydtx yt tϕ

y d

tx

y t

tϕ ϕd

angle_at_dest ,dist ,
angle_to_dest

, ,, , ,

dist

an
gl

e_
to

_d
es

t

angle_at_dest

Figure 3: Transformation of the original state space into a
lower-dimensional feature space.

Currently, we perform the transformation manually for
each action. In our ongoing research we are investigating
methods to automate the transformation. By explicitly rep-
resenting and reasoning about the physical meaning of state
variables, we research feature language generation methods.

The last step is toapproximate a function to the trans-
formed data. This is done using model trees. Model trees are
functions that map continuous or nominal features to a con-
tinuous value. The function is learned from examples, by a
piecewise partitioning of the feature space. A linear function
is fitted to the data in each partition. Model trees are a gener-
alization of decision trees, in which the nominal values at the
leaf nodes are replaced by line segments. We use model trees
because 1) they can be transformed into sets of rules that
are suited for human inspection and interpretation 2) com-
parative research shows they are the best[Belker, 2004;
Balac, 2002] 3) They tend to use only relevant variables.
This means we can start off with many more features
than are needed to predict performance, having the model
tree function as an automatic feature selector. The tree
was actually learned on an 11-dimensional feature space
[x,y,φ,xg,yg,φg,dx,dy,dist,angle to dest,angle at dest],
the model tree algorithm automatically discovered that
only [dist,angle to dest,angle at dest] are necessary to
accurately predict performance.

We have trained a model tree on the gathered data, yield-
ing rules of which we will now present an example. In Fig-
ure 4, we depict an example situation in whichdist and
angle to dest are to 2.0m and 0◦ respectively. Given these
values we could plot a performance function for varying val-
ues ofangle at dest. These plots are also depicted in Fig-
ure 4, once in a Cartesian, once in a polar coordinate system.
In the linear plot we can clearly see five different line seg-
ments. This means that the model tree has partitioned the
feature space fordist=2 andangle to dest=0 into five areas,
each with its own linear model. Below the two plots one of
the learned model tree rules that applies to this situation is
displayed. An arrow indicates its linear model in the plots.

The polar plot clearly shows the dependency of predicted
execution time on the angle of approach for the example sit-
uation. Approaching the goal at 0 degrees is fastest, and
would take a predicted 2.1s. Approaching the goal at 180

0 59.2−180 180
0

1

2

3

4

5

6

7

Angle at goal (degree)

Ti
m

e
(s

)

 2

 4

 6

 8

30

210

60

240

90

270

120

300

150

330

180 0

time = 1.26*dist + 0.018*angle_to_dest + 0.0037*angle_at_dest − 0.42then

2mdist = 2.0
angle_to_dest = 0.0
angle_at_dest = [−180,180]

(2.3 > dist > 1.86) & (angle_to_dest < 49.7) & (angle_at_dest < 59.2)if

model tree rule:

situation:

angle_at_dest (degree)

p
r
e
d
i
c
t
e
d

e
x
e
c
u
t
i
o
n

t
i
m
e

(
s
)

Figure 4: An example situation, two graphs of time prediction
for this situation with varyingangle at dest, and the model
tree rule for one of the line segments.

degrees means the robot would have to navigate around the
goal point, taking much longer (6.7s). p To evaluate the ac-
curacy of the performance models, we again randomly gen-
erate 1000 new test situations. For thegoToBall routine,
the mean absolute error and root-mean-square error between
predicted and actual execution time were 0.31s and 0.75s.
For thedribbleBall routine these values were 0.29s and
0.73s. As we will see, these errors are accurate enough to
optimize action chains.

4 Automatic subgoal refinement
As depicted in Figure 2, the automatic subgoal refinement
system takes the performance models and a chain of teleo-
operators as an input, and returns a refined intermediate goal
state that has been optimized with respect to the performance
of the overall action chain. To do this we need to specify
all the variables in the task, and recognize which of these
variables influence the performance and are not fixed. These
variables form a search space in which we will optimize the
performance using the learned action models.

4.1 State variables
In the dynamic system model[Dean and Wellmann, 1991]
the world changes through the interaction of two processes:
thecontrolling process, in our case the low-level control pro-
grams implementing the action chains generated by the plan-
ner, and thecontrolled process, in our case the behavior of the
robot. The evolution of the dynamic system is represented
by a set ofstate variablesthat have changing values. The
controlling process steers the controlled process by sending
control signalsto it. These control signals directly set some
of the state variables and indirectly other ones. The affected
state variables are called thecontrollablestate variables. The
robot for instance can set the translational and rotational ve-
locity directly, causing the robot to move, thereby indirectly
influencing future poses of the robot.

For the robot, a subset of the state variables isobservableto
its perceptive system, and they can be estimated using a state
estimation module. For any controller there is a distinction
betweendirect and derivedobservable state variables. All
direct state variables for the navigation task are depicted in
Figure 5. Direct state variables are directly provided by state
estimation, whereas derived state variables are computed by
combinations of direct variables. No extra information is con-
tained in derived variables, but if chosen well, derived vari-
ables are better correlated to the control task.

tx

y t

tϕy i

ϕi

ϕg

xi gx

y g

Figure 5: Direct state variables relevant to the navigation task

State variables are also used to specify goals internal to
the controller. These variables arebound, conform to plan-
ning terminology. It is the controller’s goal to have the bound
internal variables (approximately) coincide with the external
observable variables. The robot’s goal to arrive at the inter-
mediate position could be represented by the state variables
[xi,yi]. By setting the velocities, the robot can influence its
current position [xt,yt] to achieve [xt ≈ xi,yt ≈ yi].

4.2 Determining the search space
To optimize performance, only variables that actually influ-
ence performance should be tuned. In our implementation,
this means only those variables that are used in the model
tree to partition the state space at the nodes, or used in the
linear functions at the leaves.

In both the learned model trees for the actions
goToPoseAction and dribbleBallAction , the rel-
evant variables aredist, angle to dest andangle at dest.
These are all derived variables, computed from the direct vari-
ables [xt,yt,φt,xi,yi,φi] and [xi,yi,φi,xg,yg,φg], for the first
and second action respectively. So by changing these direct
variables, we would change the indirect variables computed
from them, which in effect would change the performance.

But may we change all these variables at will? Notxt,yt,
or φt, as we cannot simply change the current state of the
world. Also we may not alter bound variables that the robot
has committed to, being [xi,yi,xg,yg,φg]. Changing them
would make the plan invalid.

This only leaves the free variableφi, the angle at which the
intermediate goal is approached. This acknowledges our intu-
ition from Figure 1 that changing this variable will not make
the plan invalid, and that it will also influence the overall per-
formance of the plan. We are left with a one-dimensional
search space to optimize performance.

4.3 Optimization
To optimize the action chain, we will have to find those val-
ues for the free variables for which the overall performance
of the action chain is the highest. The overall performance is

estimated by summing over the performance models of all ac-
tions that constitute the action chain. In Figure 6 the first two
polar plots represent the performance of the two individual
actions for different values of the only free variable, which is
the angle of approach. The overall performance is computed
by adding those two, and is depicted in the third polar plot.

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 1 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Time action 2 (s)

 3
 6
 9
 12

30

210

60

240

90

270

120

300

150

330

180 0

Total time (s)

2.1s

5.4s

+ =

goToPose (s) dribbleBall (s) dribbleBall (s)
goToPose +

2.3s

3.8s
total = 7.5s total = 6.1s

Figure 6: Selecting the optimal subgoal by finding the opti-
mum of the summation of all action models in the chain.

The fastest time in the first polar plot is 2.1s, for angle of
approach of 0.0 degrees. The direction is indicated from the
center of the plot. However, the total time is 7.5s, because
the second action takes 5.4s for this angle . These values can
be read directly from the polar plots. However, this value
is not the optimum overall performance. The minimum of
the overall performance is 6.1s, as can be read from the third
polar plot. Below the polar plots, the situation of Figure 1 is
repeated, this time with the predicted performance for each
action.

We expect that for higher-dimensional search spaces, ex-
haustive search may be infeasible. Therefore, other optimiza-
tion techniques will have to be investigated.

5 Results
To determine the influence of subgoal refinement on the over-
all performance of the action chain, we generated 1000 situ-
ations with random robot, ball and final goal positions. The
robot executed each navigation task twice, once with subgoal
refinement, and once without. The results are summarized
in Table 1. First of all, the overall increase in performance
over the 1000 runs is 10%. We have split these cases into
those in which the subgoal refinement yielded a higher, equal
or lower performance in comparison to not using refinement.
This shows that the performance improved in 533 cases, and
in these cases causes a 21% improvement. In 369 cases, there
was no improvement. This is to be expected, as there are
many situations in which the three positions are already opti-
mally aligned (e.g. in a straight line), and subgoal refinement
will have no effect.

Unfortunately, applying our method causes a decrease of
performance in 98 out of 1000 runs. To analyze in which
cases subgoal refinement decreases performance, we labeled
each of the above runsHigher , Equal or Lower . We then

Before filtering Total Higher Equal Lower
runs 1000 533 369 98

improvement 10% 21% 0% -10%
After filtering Total Higher Equal Lower

runs 1000 505 485 10
improvement 12% 23% 0% -6%

Table 1: Results, before and after filtering for cases in which
performance loss is predicted.

trained a decision tree to predict this nominal value. This tree
yields four simple rules which predict the performance dif-
ference correctly in 86% of given cases. The rules declare
that performance will stay equal if the three points are more
or less aligned, and will only decrease if the final goal po-
sition is in the same area as which the robot is, but only if
the robot’s distance to the intermediate goal is smaller than
1.4m. Essentially, this last rule states that the robot using the
Bezier-basedgoToBallAction has difficulty approaching
the ball at awkward angles if it is close to it. In these cases,
small variations in the initial position lead to large variations
in execution time, and learning an accurate, general model
of the action fails. The resulting inaccuracy in temporal pre-
diction causes suboptimal optimization. Note that this is a
shortcoming of the action itself, not the chain optimization
methods. We will investigate if creating a specialized action
for the cases in which Bezier based navigation is unsuccessful
could solve these problems.

We then gathered another 1000 runs, as described above,
but only applied subgoal refinement if the decision tree pre-
dicted applying it would yield a higher performance. Al-
though increase in overall performance is not so dramatic
(from 10% to 12%), the number of cases in which perfor-
mance is worsened by applying subgoal refinement has de-
creased from 98 (10%) to 10 (1%). Apparently, the decision
tree correctly filtered out cases in which applying subgoal re-
finement would decrease performance.

Summarizing: subgoal refinement with filtering yields a
23% increase in performance half of the time. Only once in a
hundred times does it cause a small performance loss.

6 Related Work
Most similar to our work is the use of model trees to learn
performance models to optimize Hierarchical Transition Net-
work plans[Belker, 2004]. In this work, the models are used
to select the next action in the chain, whereas we refine an
existing action chain. Therefore, the planner can be selected
independently of the optimization process.

Reinforcement Learning (RL) is another method that seeks
to optimize performance, specified by a reward function.
Recent attempts to combat the curse of dimensionality in
RL have turned to principled ways of exploiting temporal
abstraction. Several of theseHierarchical Reinforcement
Learning methods, e.g. (Programmable) Hierarchical Ab-
stract Machines, MAXQ, and Options, are described in the
overview paper[Barto and Mahadevan, 2003]. All these ap-
proaches use the concept of actions (called ‘machines’, ‘sub-
tasks’, or ‘options’ respectively). In our view, the benefits
of our methods are that they acquire more informative per-

formance measures, facilitate the reuse of action models, and
scale better to continuous and complex state spaces.

The performance measures we can learn (time, success
rate, accuracy) areinformativevalues, with a meaning in the
physical world. Future research aims at developing meaning-
ful composites of individual models. We will also investigate
dynamic objective functions. In some cases, it is better to be
fast at the cost of accuracy, and sometimes it is better to be
accurate at the cost of speed. By weighting the performance
measures time and accuracy accordingly in a composite mea-
sure, these preferences can be expressed at execution time.
Since the (Q-)Value compiles all performance information in
a single non-decomposable numeric value, it cannot be rea-
soned about in this fashion.

The methods we proposedscalebetter to continuous and
complex state spaces. We are not aware of the application
of Hierarchical Reinforcement Learning to (accurately simu-
lated) continuous robotic domains.

In Hierarchical Reinforcement Learning, the performance
models of actions (Q-Values) are learned in the calling con-
text of the action. Optimization can therefore only be done
in the context of the pre-specified hierarchy/program. In
contrast, the success of action selection in complex robotic
projects such as WITAS, Minerva and Chip depends on the
on-line autonomous sequencing of actions through planning.
Our methods learn abstract performance models of actions,
independent of the context in which they are performed. This
makes themreusable, and allows for integration in planning
systems.

The only approach we know of that explicitly combines
planning and RL is RL-TOPS (Reinforcement Learning -
Teleo Operators) [Ryan and Pendrith, 1998]. Abrupt tran-
sitions arise here too, and the author recognizes that “cut-
ting corners” between actions would improve performance,
but does not present a solution.

Many behavior based approaches also achieve smooth mo-
tion by a weighted mixing of the control signals of various
actions[Saffiotti et al., 1995]. Since there are no discrete
transitions between actions, they are also not visible in the
execution. Since achieving optimal behavior is not an explicit
goal, it is left to chance, not objective performance measures.

A very different technique for generating smooth transi-
tions between skills has been developed for quadruped robots
[Hoffmann and D̈uffert, 2004], also in the RoboCup do-
main. The periodic nature of robot gaits allows their mean-
ingful representation in the frequency domain. Interpolat-
ing in this domain yields smooth transitions between walk-
ing skills. Since the actions we use are not periodic, these
methods do unfortunately not apply.

7 Conclusion and Future Work
On-line optimization of action chains allows the use of plan-
ning with abstract actions, without losing performance. Op-
timizing the action chain is done by refining under-specified
intermediate goals, which requires no change in the planner
or plan execution mechanisms. To predict the optimal overall
performance, performance models of each individual abstract
action are learned off-line and from experience, using model
trees. It is interesting to see that requiring optimal perfor-
mance can implicitly yield smooth transitions in robotic and

natural domains, even though smoothness in itself is not an
explicit goal in either domain.

Applying subgoal refinement to the presented scenario
yields good results. However, the computational model un-
derlying the optimization is certainly not specific to this sce-
nario, or to robot navigation. In principle, learning action
models from experience using model trees is possible for any
action whose relevant state variables can be observed and
recorded. The notion of controllable, bound and free state
variables are taken directly from the dynamic system model
and planning approaches, and apply to any scenario that uses
these paradigms. Our future research therefore aims at ap-
plying these methods in other domains, for instance robots
with articulated arms and grippers, for which we also have a
simulator available.

Currently, we are evaluating if subgoal refinement im-
proves plan execution on real Pioneer I robots as much as
it does in simulation. Previous research has shown that action
models learned in simulation can be applied to real situations
with good result[Bucket al., 2002; Belker, 2004].

References
[Balac, 2002] N. Balac.Learning Planner Knowledge in Complex,

Continuous and Noisy Environments. PhD thesis, Vanderbilt Uni-
versity, 2002.

[Barto and Mahadevan, 2003] A. Barto and S. Mahadevan. Recent
advances in hierarchical reinforcement learning.Discrete event
systems, 2003.

[Belker, 2004] T. Belker.Plan Projection, Execution, and Learning
for Mobile Robot Control. PhD thesis, Department of Applied
Computer Science, Univ. of Bonn, 2004.

[Bucket al., 2002] S. Buck, M. Beetz, and T. Schmitt. Reliable
Multi Robot Coordination Using Minimal Communication and
Neural Prediction. InSelected Contributions of the Dagstuhl
Seminar “Plan-based Control of Robotic Agents”, 2002.

[Dean and Wellmann, 1991] T. Dean and M. Wellmann.Planning
and Control. Morgan Kaufmann Publishers, 1991.

[Dohertyet al., 2000] P. Doherty, G. Granlund, K. Kuchcinski,
E. Sandewall, K. Nordberg, E. Skarman, and J. Wiklund. The
WITAS unmanned aerial vehicle project. InProceedings ECAI-
00, 2000.

[Firby et al., 1996] R. Firby, P. Prokopowicz, M. Swain, R. Kahn,
and D. Franklin. Programming CHIP for the IJCAI-95 robot
competition.AI Magazine, 17(1):71–81, 1996.

[Hoffmann and D̈uffert, 2004] J. Hoffmann and U. D̈uffert. Fre-
quency space representation and transitions of quadruped robot
gaits. In Proceedings of the 27th conference on Australasian
computer science, 2004.

[Nilsson, 1994] N.J. Nilsson. Teleo-reactive programs for agent
control. Journal of Artificial Intelligence Research, 1994.

[Ryan and Pendrith, 1998] M. Ryan and M. Pendrith. RL-TOPs: an
architecture for modularity and re-use in reinforcement learning.
In Proc. 15th International Conf. on Machine Learning, 1998.

[Saffiottiet al., 1995] A. Saffiotti, K. Konolige, and E.H. Ruspini.
A multivalued-logic approach to integrating planning and con-
trol. Artificial Intelligence, 1995.

[Thrunet al., 1999] S. Thrun, M. Bennewitz, W. Burgard, A.B.
Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy,
J. Schulte, and D. Schulz. MINERVA: A tour-guide robot that
learns. InKI - Kunstliche Intelligenz, pages 14–26, 1999.

